物理CMATH    干渉1

                                組                   番  氏名

Q1.次の振幅1の波動方程式の一般式を入力しなさい。

y = Sin[2π {t/T - x/λ} + θ]

A1

y[T_, λ_, θ_] := Sin[2π (t/T - x/λ) + θ]

f1 = y[8, 4, 0] /.t -> 2

f2 = y[8, -4, -π/2] /.t -> 2

g1 = Plot[f1, {x, 0, 9}, AxesLabel -> {x, y}]

g2 = Plot[f2, {x, 0, 9}, AxesLabel -> {x, y}, PlotStyle -> Dashing[{0.02, 0.02}]]

g3 = Plot[f1 + f2, {x, 0, 9}, AxesLabel -> {x, y}, PlotStyle -> Hue[1]]

Show[g1, g2, g3]

Sin[2 π (1/4 - x/4)]

-Cos[2 π (1/4 + x/4)]

[Graphics:HTMLFiles/WaveIF_11.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_13.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_15.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_17.gif]

- Graphics -

Do[
f1 = y[8, 4, 0] ; 
f2 = y[8, -4, -π/2] ; 
Plot[f1 + f2, {x, 0, 9}, PlotRange -> {{0, 9}, {-2, 2}}, AxesLabel -> {x, y}, PlotStyle -> Hue[1]], {t, 0, 7, 0.5}]

[Graphics:HTMLFiles/WaveIF_20.gif]

[Graphics:HTMLFiles/WaveIF_21.gif]

[Graphics:HTMLFiles/WaveIF_22.gif]

[Graphics:HTMLFiles/WaveIF_23.gif]

[Graphics:HTMLFiles/WaveIF_24.gif]

[Graphics:HTMLFiles/WaveIF_25.gif]

[Graphics:HTMLFiles/WaveIF_26.gif]

[Graphics:HTMLFiles/WaveIF_27.gif]

[Graphics:HTMLFiles/WaveIF_28.gif]

[Graphics:HTMLFiles/WaveIF_29.gif]

[Graphics:HTMLFiles/WaveIF_30.gif]

[Graphics:HTMLFiles/WaveIF_31.gif]

[Graphics:HTMLFiles/WaveIF_32.gif]

[Graphics:HTMLFiles/WaveIF_33.gif]

[Graphics:HTMLFiles/WaveIF_34.gif]

Q8.このように節と腹の位置が時間変化しない波を何というか。また、節となる位置の条件を求めよ。

A8

Q9.次に周期8s,波長4mでx軸の正負に伝わる波を示せ。AB間は6mとし、さらに合成波を示し、
   節の数を求よ。またtを連続変化させた様子を示せ。

A9

f1 = y[8, 4, 0] /.t -> 0

f2 = y[8, -4, π] /.t -> 0

g1 = Plot[f1, {x, 0, 6}, AxesLabel -> {x, y}]

g2 = Plot[f2, {x, 0, 6}, AxesLabel -> {x, y}, PlotStyle -> Dashing[{0.02, 0.02}]]

g3 = Plot[f1 + f2, {x, 0, 6}, AxesLabel -> {x, y}, PlotStyle -> Hue[0.6]]

Show[g1, g2, g3]

-Sin[(π x)/2]

-Sin[(π x)/2]

[Graphics:HTMLFiles/WaveIF_43.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_45.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_47.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_49.gif]

- Graphics -

Do[
f1 = y[8, 4, 0] ; 
f2 = y[8, -4, π] ; 
Plot[f1 + f2, {x, 0, 6}, PlotRange -> {{0, 6}, {-2, 2}}, AxesLabel -> {x, y}, PlotStyle -> Hue[0.6]], {t, 0, 7, 0.5}]

[Graphics:HTMLFiles/WaveIF_52.gif]

[Graphics:HTMLFiles/WaveIF_53.gif]

[Graphics:HTMLFiles/WaveIF_54.gif]

[Graphics:HTMLFiles/WaveIF_55.gif]

[Graphics:HTMLFiles/WaveIF_56.gif]

[Graphics:HTMLFiles/WaveIF_57.gif]

[Graphics:HTMLFiles/WaveIF_58.gif]

[Graphics:HTMLFiles/WaveIF_59.gif]

[Graphics:HTMLFiles/WaveIF_60.gif]

[Graphics:HTMLFiles/WaveIF_61.gif]

[Graphics:HTMLFiles/WaveIF_62.gif]

[Graphics:HTMLFiles/WaveIF_63.gif]

[Graphics:HTMLFiles/WaveIF_64.gif]

[Graphics:HTMLFiles/WaveIF_65.gif]

[Graphics:HTMLFiles/WaveIF_66.gif]

Q10.前の2つのグラフは波の反射と対比させるとどの位置にどのような反射版があることに等しいか。

A10

Q11.次に行路差が半波長の偶数倍でも奇数倍でもない場合について試してみよ。例えば周期8s,波長5mでx軸の正負に伝わる波を示せ。AB間は12mとし、さらに合成波を示し、
   節の数を求よ。またtを連続変化させた様子はどういう違いがあるか。

A11

f1 = y[8, 5, 0] /.t -> 0

f2 = y[8, -5, (2π)/5] /.t -> 0

g1 = Plot[f1, {x, 0, 12}, AxesLabel -> {x, y}]

g2 = Plot[f2, {x, 0, 12}, AxesLabel -> {x, y}, PlotStyle -> Dashing[{0.02, 0.02}]]

g3 = Plot[f1 + f2, {x, 0, 12}, AxesLabel -> {x, y}, PlotStyle -> Hue[0.3]]

Show[g1, g2, g3]

-Sin[(2 π x)/5]

Sin[(2 π)/5 + (2 π x)/5]

[Graphics:HTMLFiles/WaveIF_75.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_77.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_79.gif]

- Graphics -

[Graphics:HTMLFiles/WaveIF_81.gif]

- Graphics -

Do[
f1 = y[8, 5, 0] ; 
f2 = y[8, -5, (2π)/5] ; 
Plot[f1 + f2, {x, 0, 12}, PlotRange -> {{0, 6}, {-2, 2}}, AxesLabel -> {x, y}, PlotStyle -> Hue[0.3]], {t, 0, 7, 0.5}]

[Graphics:HTMLFiles/WaveIF_84.gif]

[Graphics:HTMLFiles/WaveIF_85.gif]

[Graphics:HTMLFiles/WaveIF_86.gif]

[Graphics:HTMLFiles/WaveIF_87.gif]

[Graphics:HTMLFiles/WaveIF_88.gif]

[Graphics:HTMLFiles/WaveIF_89.gif]

[Graphics:HTMLFiles/WaveIF_90.gif]

[Graphics:HTMLFiles/WaveIF_91.gif]

[Graphics:HTMLFiles/WaveIF_92.gif]

[Graphics:HTMLFiles/WaveIF_93.gif]

[Graphics:HTMLFiles/WaveIF_94.gif]

[Graphics:HTMLFiles/WaveIF_95.gif]

[Graphics:HTMLFiles/WaveIF_96.gif]

[Graphics:HTMLFiles/WaveIF_97.gif]

[Graphics:HTMLFiles/WaveIF_98.gif]


Created by Mathematica  (July 9, 2007) Valid XHTML 1.1!